Inequality Word Problems We will solve the following word problems algebraically by writing and solving an inequality! 1. Shaggy earned \$7.55 per hour plus an additional \$100 in tips waiting tables on Saturday. He earned at least \$160 in all. Find the minimum number of hours, to the nearest hour, Shaggy worked on Saturday. Let h=the#of hours Staggy worked on Saturday 7.55 h + 100 ≥ 160 -100 > 7.55 7.55 7.55 > > h ≥ 7.947 ... Shaggy worked a minimum of 8 hours. 2. Connor went to the county fair with \$22.50 in his pocket. He bought a hot dog and drink for \$3.75 and then wanted to spend the rest of his money on ride tickets which cost \$1.25 each. What is the total maximum number of tickets he can buy based upon the given information? Let $n = the # of fickets convor can buy 3.75 + 1.25 n <math>\leq 22.50$ $3.75 + 1.25 n \le 22.50$ -3.75 1/25n \(\) n 515 Connor can buy at most 15 fickets. 3. On a particular airline, checked bags can weigh no more than 54 pounds. John packed 25 pounds of clothes and five identical gifts in a suitcase. The suitcase, itself, weighs $7\frac{1}{2}$ pounds. What is the maximum number of pounds that each gift can weigh? Let $$g = weight 00$$ each gift $25 + 7.5 + 5g \le 54$ $-32.5 + 5g \le 54$ $-32.5 + 5g \le 21.5$ $5g \le 21.5$ $g \le 4.3$ Each gift can weigh at most 4.3 pounds. 4. At most, Kyle can spend \$50 on sandwiches and chips for a picnic. He already bought chips for \$6 and will buy sandwiches that cost \$4.50 each. How many sandwiches can Kyle buy? Let $$S = the # of Sandwiches$$ $$(9 + 4.5s \le 50)$$ $$-6$$ $$4.5s \le 44$$ $$4s = 4.5$$ $$5 \le 9.7$$ Kyle can buy at most 9 sandwiches. 5. Games at the carnival cost \$3 each. The prizes awarded to winners cost the owner \$145.65. How many games must be played for the owner to make at least \$50? Let $$n = the \# of games$$ $$3n + -145.65 \ge 50$$ $$+148.65 + 145.65$$ $$8n > 198.65$$ $$3$$ $$198.65$$ $$3$$ $$198.65$$ There was for the sound of